МозгоНавигатор: 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51
Картинка профиля sTs

¡ — Что такое EL лента (светящаяся лента, бумага, провод)

08.11.2012 в ¡ - Это Интересно!

Картинка профиля sTs

About sTs

Люблю самоделки. Стремлюсь к здоровому, гармоничному образу жизни. В людях ценю открытость и честность. Своим сайтом хочу донести до молодёжи ценность созидательных качеств в человеке. Пусть каждый обретет новые знакомства и получит массу знаний и опыта, которые сделают из него целостную личность! Подробнее о себе рассказываю в блоге.

Только-только начали привыкать к светодиодам, как физики опять подбросили новинку, на сей раз—тонкопленочные электролюминофоры. Тот же (в первом приближении) светодиод, но не малюсенький кристаллический, а растянутый в ленту довольно-таки приличной площади и притом гибкий, полимерный.

Кому-то невдомек: светит, и ладно, на то и физики, чтоб выдумывать всякое. Ну а мы постарались заглянуть внутрь этого странного материала, чтобы понять: как и почему светит?

И тут же наткнулись на первый сюрприз: оказывается, существует не один такой материал, а два, и оба светят под действием электричества, но в силу разных физических процессов, и даже ток им требуется разный: одному — переменный, другому — постоянный. В том, который работает от переменного тока, светится неорганический порошок (обыкновенно это легированный медью или марганцем сернистый цинк), распределенный в пленке диэлектрика с напыленными токопроводящими слоями, к которым приложено переменное напряжение порядка 100 B звуковой частоты (от 400 до тысячи с лишним герц). Не забыли еще школу? Узнаете? Да это же не что иное, как светящийся конденсатор! Эффект свечения легированного медью сернистого цинка, помещенного в диэлектрик между обкладок конденсатора, открыл Дестрио в 1936 году. Больше 60 лет понадобилось, чтобы кто-то (кто именно, история умалчивает) додумался сказать по этому поводу: «Да будет свет!» — и изобрел электролюминесцентную пленку.

 

Материал, светящийся при постоянном токе,— истинно тонкопленочный светодиод. Его создание стало возможным с открытием токопроводящих полимеров и обошлось ни много ни мало в одну общую Нобелевскую премию, присужденную в 2000 году «на троих» тезкам-американцам Алану Хигеру и Алану Мак-Диармиду вкупе с японцем Хидеки Сиракавой. Кстати, Сиракава сделал свое открытие случайно. В начале 70-х нобелевский лауреат, а тогда научный сотрудник Токийского университета, изучая синтез свободных пленок полиацетилена, в одном из опытов использовал ошибочно большую концентрацию катализатора. Результатом этой ошибки было образование красивых серебристых пленок полиацетилена с характерным металлическим блеском. А главное—пленки проводили электрический ток!

Вскоре американцы и японец стали работать вместе. В 1977 году ими было опубликовано первое краткое сообщение. Позже они нашли оптимальные условия синтеза, благодаря чему удельная проводимость полимера повысилась до уровня алюминия и даже меди.

В последние 10 лет появилась вторая генерация токопроводящих полупроводниковых полимерных материалов. На их основе конструируются органические транзисторы, лазеры, солнечные батареи, а также интересующие нас тонкопленочные светодиоды. Надо отметить, что перспективы их применения связаны не только со светотехникой, но также и с производством дисплеев нового поколения — так называемых OLED.

Итак, светящийся конденсатор и тонкопленочный светодиод. В первом люминесценция возбуждается сильным электрическим полем звуковой частоты, близким к пробивному, и называется предпробивной. Во втором электрическое поле намного меньше, ток постоянный, а люминесценция называется инжекционной. Рассмотрим тот и другой с точки зрения протекающих в них физических процессов.

Хорошим люминофором, как было сказано выше, является сульфид цинка, сильно легированный медью. На поверхности его кристалликов, распределенных в диэлектрике, образуются островки фазы CuxS с проводимостью р-типа. Эта фаза образует с полупроводником n-типа ZnSCu гетеропереход, который при обратном смещении является областью концентрации электрического поля.

Кстати, за исследование гетеропереходов, то есть р-n-переходов на границе двух полупроводниковых кристаллов с разным типом проводимости, наш соотечественник Жорес Алферов тоже отхватил «Нобеля».

При наложении напряжения прикатодный гетеропереход смещается в обратном направлении (запирается). В нем сосредоточивается сильное поле. Электроны из зоны р-типа CuxS туннелируют в зону n-типа ZnS-Cu и там разгоняются сильным электрическим полем до энергий, необходимых для ударной ионизации кристаллической решетки. Возникающие при этом дырки захватываются центрами свечения, а освобожденные электроны лавиной движутся к противоположному концу кристаллика, где происходит их рекомбинация с центрами свечения, ионизированными в предшествующий полупериод переменного напряжения, когда там было сильное поле. Рекомбинация сопровождается испусканием светового кванта. Таким образом, у одного из двух гетеропереходов в каждом кристаллике происходит возбуждение центров люминесценции, одновременно у противоположного гетероперехода происходит рекомбинационное излучение, реализующее энергию, накопленную в предыдущий полупериод напряжения.

Видите, как все просто! 🙂 Особенно если вы были отличником в школе и у вас хорошая память. Тогда вы, безусловно, помните, что дырка в полупроводнике — это не технологическое отверстие, вроде дырки от бублика, а квазичастица — носитель положительного заряда, образующаяся в кристаллической решетке при захвате электрона ядром атома примеси.

Светящиеся люминесцентные источники (ленты и провода) используются в сфере светового дизайна уже более десяти лет. Ряд международных патентов на изобретения в области электролюминесцентных источников света принадлежит нашему соотечественнику Рубену Акоповичу Поляну.

Основанные на этом принципе тонкопленочные электролюминесцентные излучатели позволяют получать яркость до 200 кд/м2. Их срок службы достигает 20000 часов. Площадь может достигать нескольких квадратных метров. Цвет их свечения определяется составом активного слоя. ZnS:Cu люминесцирует голубым и зеленым, ZnS:Mn — оранжево-желтым. Перспективными для практического применения оказались активные слои из сульфидов щелочно-земельных элементов, легированных редкоземельными элементами. На их основе созданы излучатели сине-зеленого свечения (SrS:Ce), зеленого (CaS:Ce), красного (CaS:Eu, CaS:Er) и белого (CaS:Pr, K, SrS:Ho, Nd, SrS:Sm, Ce).

В излучающем свет диоде, в том числе и тонкопленочном, работает не запертый, а, наоборот, смещенный в прямом направлении р-n-переход. При снижении энергетического барьера происходит инжекция электронов из n-области в р-область, и при рекомбинации электронов и дырок излучаются фотоны. Сложность состоит в том, чтобы разогнать электроны до нужных скоростей, что не так-то просто сделать в кристалле, где электроны рассеиваются на колеблющихся узлах решетки.

За счет чего становится проводником тока органический полимер? Его молекула состоит из чередующихся сопряженных одинарных и двойных связей. При этом двойные связи слабо локализованы и образуют общую электронную систему сопряжения, которая охватывает всю молекулу. Чтобы полимер-полупроводник стал проводником тока, нужно создать носители заряда вдоль полимерной цепи. Для этого нужно один или несколько электронов удалить из общей системы сопряжения или, наоборот, добавить к ней. Достигнуть этого можно окислительной модификацией полимера йодом, приводящей к изъятию электрона из системы сопряжения, или восстановительной модификацией натрием, который служит донором электрона. В результате в полимере возникают положительно или отрицательно заряженные квазичастицы—поляроны. При высокой степени модификации поляроны объединяются в пары с образованием заряженных солитонов. Эти удивительно подвижные квазичастицы под воздействием электрического поля обеспечивают высокую проводимость полимеров с системой сопряженных связей.

Схема светоизлучающего диода, в котором используется электролюминесценция пленки сопряженного полимера

Оказывается, тонкие пленки сопряженных полимеров могут генерировать свет, если они находятся между двумя электродами, один из которых служит источником электронов, а другой—дырок. Когда через такое устройствопропускается постоянный ток, электроны и дырки рекомбинируют в объеме пленки и в полимерных цепочках возникают возбужденные состояния, способные люминесцировать. Цвет люминесценции зависит от ширины запрещенной зоны полимера и может легко регулироваться посредством химической модификации. В этом важное преимущество органических полупроводников перед неорганическими.

Тонкопленочные электролюминофоры не сделают революции в светотехнике, но сферы их возможного применения многообразны, а связанный с ними бизнес весьма перспективен. В каких же приложениях прежде всего следует ожидать пришествия светящихся пленок?

На Западе это то, что связано с безопасностью: светящаяся дорожная разметка, сигнальные огни кораблей, самолетов и поездов, подсветка ступенек (в Европе, например, законодательно требуется их световая маркировка), светящиеся спасательные костюмы. Возможность использования в столь экстремальных условиях определяется высокой степенью влагонепроницаемости и ударостойкости светящейся ленты, ее длительным сроком эксплуатации без обслуживания и низким энергопотреблением. Среди других приложений: светящиеся панели в автомобиле, декоративная подсветка помещений, световая реклама, оконтуривание зданий, всевозможные шоу, светящаяся бижутерия и футболки с эквалайзерами.

Еще рано говорить о возможности применения тонкопленочных люминофоров для освещения, о создании из них светящихся стен и потолков. Пока их главная цель — неярко светить в полумраке.

Ниша, занимаемая на рынке тонкопленочными электролюминофорами, в чем-то близка к оптоволокну с боковым свечением. Аналогичная яркость, отсутствие выделения тепла, гибкость, стойкость к влаге—и сходная цена. Причем, если сравнивать эффект, достигаемый на определенной площади, то использование пленок обходится дешевле. Другое преимущество тонкопленочных электролюминофоров, важное для некоторых приложений,—отпадает необходимость во внешнем источнике света, таком, как светодиод. С другой стороны, в оптоволокне нет токонесущих элементов, следовательно, его безопасность выше. Пока что у пленки нет эффекта мерцания.

Что же представляет собой El лента? Это гибкая прозрачная лента в полимерной влагонепроницаемой оболочке. Схематично ее разрез показан на рисунке.

Пока что ыпускается шесть типов ленты: с белым, голубым, красным, зеленым, желтым и оранжевым свечением. Для подключения к сетевому напряжению (220 В) используется драйвер. Его назначение — формирование выходного напряжения звуковой частоты (850±70 Гц). Отсюда, кстати, видно, что предлагаемый продукт есть не что иное, как рассмотренный выше «светящийся конденсатор». Выпускается три типа драйверов: к первому может быть подключена без потерь лента длиной до 20 метров, ко второму — до 100 метров и, наконец, к третьему, демонстрационному, — только короткий кусочек сантиметров в 15, зато питается он от батарейки.

Энергопотребление составляет 360 ватт на 100 метров ленты. Ток при стометровой длине ленты 1,7 А с нагрузкой и 1,5 А без нагрузки, при двадцатиметровой ленте соответственно 500 и 200 мA.

Как видим, у данного вида продукции есть одно ограничение: она стационарна, то есть не предназначена для таких приложений, как автомобиль, одежда и бижутерия. Компактные светящиеся пленки, питающиеся от миниатюрных батареек или аккумуляторов, хорошо известные на Западе, несомненно, ждут своего часа у нас.

Электролюминесцентный провод состоит из 5 частей. Первое — это медная сердцевина — проводник, покрытый люминофором (кристаллофосфором).  EL wire также иногда называется холодным или гибким неоном). Очень тонкий провод обвивает люминофор, покрывающий медную сердцевину, и электрически изолирован люминофором от неё. Данный «сэндвич» из центрального медного провода, люминофора и обвивающей тонкой проволоки помещён внутрь прозрачной ПВХ изоляции. Поверх ПВХ изоляции может быть тонкий слой цветной ПВХ плёнки. Между сердцевиной и тонким обвивающим проводом прикладывается переменное напряжение порядка 90—120 Вольт.. Провод можно представить в виде коаксиального конденсатора с ёмкостью порядка 3 нФ/м. Быстрая зарядка-разрядка такого конденсатора заставляет светиться люминофор между обкладками.

Что имеем сейчас?

 

EL лента:

Примерные характеристики:

Диаметр 1-5 мм
Напряжение 5-200 В с частотами 200 — 2000 Гц
Срок годности : 5000-8000 часов
Мощность при напряжении 120В и частоте 200~2000Гц: 108~1032мВт/м
Яркость при напряжении 120В и частоте 200~2000Гц: 30~126Кд/м2
Рабочий диапазон переменной частоты: 50~5000Гц, оптимальная частота 400Гц.
Рабочий диапазон температур: -35º ~ +65º С

Электролюминесцентная (EL) панель (бумага)

 

Примерные характеристики:

Основной материал: ITO электропроводящая пленка
Толщина листа: 0,20мм ~ 0,45мм
Срок годности : 20000 часов
Мощность: 3-5мВт/см2
Рабочий диапазон напряжения: 25~180В
Рабочий диапазон переменной частоты: 50~5000Гц, оптимальная частота 400Гц.
Цвета излучения: синий, сине-зеленый, зеленый, оранжевый, белый,  фиолетовый, красный, светло-красный и т.д.
Рабочий диапазон температур: -35º ~ +65º С
Рабочий диапазон влажности воздуха: 0% ~ 90%
Минимальный размер листа: 6х10мм
Максимальный размер листа: 100Х60cm
Минимальный радиус сгиба: 6,5 мм

 Электролюминесцентный (EL) кабель (холодный неон)


Примерные характеристики:

Существует уже несколько поколений гибкого неона с разными характеристиками.

Интересно — как скоро светодиодные трубки отойдут на второй план?

(Sourse1 + Sorse 2)


  • RSS
  • Facebook
  • LiveJournal
  • Добавить ВКонтакте заметку об этой странице
  • Мой Мир
  • В закладки Google
  • Blogger
  • Twitter

11 ответов на ¡ — Что такое EL лента (светящаяся лента, бумага, провод)

  1. А при производстве панели они же порошок укладывают через чпу!!! Что за порошок? Эта смесь цинка? У нас в стране никто не производит, только листами торгуют. Так а если печатать сразу нужную форму через чпу? Где порошок брать???

    • Можно вырезать ленту на станке с ЧПУ. Про укладку станком не слышал еще. Там не просто порошок же.

  2. Дима, возможно ли производство неоновой ленты шириной 10-20 см (нормированной длины) и с силой света, как основной источник света в интерьере?

  3. где такое можно купить ?

  4. Вопрос к Диману , как ты запитал такую бумагу на футболке , она же 25 В требует ??

  5. Электролюминесцентная (EL) панель (бумага) лежит у меня дома пришил к чёрной футболке одеваю на дискотеки новый год или какие нибудь праздники без света или просто ношу поздно вечером.))))) стоит такая штука 13$
    ))))))

  6. Т.н холодный неон =)

    • Угу. Но неон применим только к проводу по идее. Вообще конечно неудачное название. Неона там нет 🙂

Прокомментировать

Ваш e-mail не будет опубликован. Обязательные поля помечены *

Мастер-классы | Как сделать | DIY | Handmade | Self made | Поделки | Своими руками | Карта сайта | Реклама

Всё что ты хочешь, ты можешь сделать САМ! Мы за созидание, развитие и свободное распространение знаний и личного опыта!

МозгоЧины - сообщество энтузиастов © 2010 – 2016

Перейти к верхней панели